منابع مشابه
Conformal Geometry
Arrows in this diagram indicate input from one topic to another. Closely related topics are joined by lines. Conformal geometry is highly analogous to CR geometry, so their boxes are close together and arrows run in both directions. The left hand side of the diagram is largely algebraic. At the top of the diagram, Q-curvature and ambient metrics are specific aspects of conformal geometry, which...
متن کاملJet Isomorphism for Conformal Geometry
Local invariants of a metric in Riemannian geometry are quantities expressible in local coordinates in terms of the metric and its derivatives and which have an invariance property under changes of coordinates. It is a fundamental fact that such invariants may be written in terms of the curvature tensor of the metric and its covariant derivatives. In this form, they can be identified with invar...
متن کاملConformal Blocks in the Qcd Pomeron Formalism
The conformal invariance properties of the QCD Pomeron in the transverse plane allow us to give an explicit analytical expression for the conformal eigenvectors in the mixed representation in terms of two conformal blocks, each block being the product of an holomor-phic times an antiholomorphic function. This property is used to give an exact expression for various functions of interest, the Po...
متن کاملA stochastic control formalism for dynamic biologically conformal radiation therapy
0377-2217/$ see front matter 2011 Elsevier B.V. A doi:10.1016/j.ejor.2011.10.039 ⇑ Corresponding author. Address: Department of Ra of Washington, Box 356043, Seattle, WA 98195-6043 598 8133; fax: +1 206 598 6218. E-mail address: [email protected] (M. Kim State-of-the-art methods for optimizing cancer treatment over several weeks of external beam radiotherapy take a static–deterministic vie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 1935
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.21.3.168